
' ISSN 0265-2919

a : ae

Next Week
® We look at the new

/61 Commodore 16, the long-
awaited replacement for the

APPLICATION

ON SPEAKING TERMS Programming
robots to speak is one of the most difficult
tasks facing computer scientists. We look at Vic-20.
the most recent developments in the field © Continuing our series of

2 programming projects, we
examine how to develop

HARDWARE adventure games in BASIC and
LOGO.

THE BEASTY WITHIN We look at the © Lotus 1-2-3 has already

Beasty, one of the first budget-priced robots, 1/0 pap ioatae roe es

which can be used with a BBC Micro we take elec: look atte
st spreadsheet capabilities.

GRID IRON Our spreadsheet series
continues with a review of Multiplan for the
Commodore 64. We draw up a table to
calculate statistics for American football to
demonstrate its capabilities |

MUG’S GAME A game of gangsters for the
Spectrum from the creators of The Hobbit

SWORD PLAY We look at the general
theory behind programming a text-based
adventure game in LOGO |

HOLLERITH CODE TO HYBRID
INTEGRATED CIRCUIT A weekly
glossary of computing terms

PROGRAMMING PROJECTS

: ‘ Editor Mike Wesiey, Art Director David Whelan; Technical Editor Gran Vorris: Production Editor Catherine
SPIRIT OF ADVENTURE We begin a Cardwell, Art Editor Claudia Zeff: Chief Sub Editor Robert Pickering: Designer Julian Dorr, Art Assistant Liz

2 f ll h l 3 Ps 7 6 6 Dixon, Stati Water Stephen ae See Mann, Consultant Editor Sieve Colwi, Contributors Geol!
Bains, Garvey Mella, Vine Curtis, Steve Colwill, Chris Navior, lony Haringion, Steve Malone Software

new project Ora t ec popu ar Mmucros in Consultants Pict Software City, Group Art Director Perry Neville. Managing Director Stephen England. Published
by Orbis Publishing Ltd: Editorial Director Brian Innes: Project Development Peter Brookesinith Executive Editor
Maunce Geller, Production Controller Peter [ayior-Medhurst, Designed and produced by Bunch Partworks Ltd:
Ecitonial Office 4 Rathbone Place, Landon W1P IDE, © APSIF Copenhagen 1984: © Oris Publishing Lid 1904:
Typeset by Universe; Reproduction by Mullis Morgan Ltd; Printed in Great Britain by Artisan Press Ltd, Leicester

HOW 10 OBTAIN ISSUES AND BINDERS FOR THE HOME COMPUTER ADVANCED COURSE — issues can be obtained by
Diacing an order with your Newsagent OF direct from our SuDSCIiDlion department || you fave any dfficully
oDlaining any back issues [roi your newsagent, please write LO Us Siating the issue(s) required and enclosing a
chegue tor the cover price Oo] tne issue(s). AUSTRALIA - please wiite io: Gordon & Goich (Aus) Lid 114 Wiliam
street, PO Box /6/G, Melbourne, Viciona 3001, MALTA, NEW ZEALAND & SOUTH AFRICA - Back junjbers aie
avalia0ie al COVEl price ifom your newsagent [In Case Of dificully, write to the address given fo) binders.
UN/EIRE - Price: 80p//RE 1 Subscription. 6 montis: £23.92. | Year £4/ 64 Binder please send £3.95 per
binder, Oo: take advantage O! Gur Special Ofte! in early issues EUROPE -Fiice 8Up Subscrolion 6 micnins air
£37.90, Surface £3146 | year air £75.92 Surlace £62.92, Binder £5.00. Airmail $500 MALIA- Ubiain
binders irom your newsagent or Ville: (Malla) Lid, MA Vassalli Street Valetia, Malta Price £3.95 MIDDLEEAST -
Price. 60p SuDscription 6 montis air £43.94 Surface £3146 | year ar £8/ 88 Surace £62.92 Ginder
£9.00. Airmail 56.3), AMERICAS/ASIA/AFRICA - Price US/CANS1.95/80p Subscription 6 months air £5) 74.
purace £3146 | year air 103 48. Surace £62.92 Binder £5.00 Airmail £9 44 SOUINAPRICA- ice SA
Bi9o Ublain binders rom any Dianch of Central News Agency or Intermag PO Box 5/394, Springteld 2137.
SINGAPORE - Price. Sing 54.50. Obtain binders from MPH Distributors, 601 Sims Drive, 03-07-21, Sincapore
1438 AUSTRALASIA/FAR EAST - fice 80p. Subscription 6 montis ar £55.38 Sudace £3146 | year air
£110 76. Surace :62 92 Binder £5.00. Airmail £9 84 AUSTRALIA-Frice 4u85195 Obtain binders iron First
Posi Fly Lid, 23 Chandos Street Si Leonards, NSW 2065 NEW ZEALAND Fiice N/52.25 Obtain Dindercion
your newsagent or Gordon & Gotch (NZ) Lid 70 Box 1595, Wellington.
ADDRESS FOR BINDERS AND BACK ISSUES — Orbis Publishing Limited, Urbis House, Bediordbury, London WOZ
4B). lelepnone Ui 3/9 6/11, Cheques/ postal orders should be made payable lo Urbis Publishing Limited Binder
prices include postage and packing and prices are in Slir'ing. Back issues are sold al tie cover orice, and we do not
charge carriage in tie UK.
NOTE — Binders and back issues are obtainable subject io availability of stocks. Whilst every aliemmp! 5 made to
keep (1e 011Ce Of Ie issues anc binders Constant, the publishers reserve the righ to increase the stated prices at
any ime wien Circumstances dictate. Binders depicted in tis publication are those produced for tie UK and
Australian markets ony. Binders and issues may be subject io imporl duly and/or oval faxes which are oct
included in te above prices unless Stated.

which we learn to program an adventure
game 7

MACHINE CODE

PEST CONTROL We continue to develop
a machine code debugger program by
looking at the preliminary set of routines

LOST IN MAZES We manoeuvre our twin- _—
motor vehicle through a maze [/[2

REFERENCE CARD We continue to list INSIDE
9 ADDRESS FOR SUBSCRIPTIONS — Orbis Publishing Limited, Hurst Farm, Baydon Road, Lambourn Woodlands.

extracts from the Z80 programmers BACK Newbury Berks, RG 16 7TW, Telephone: 0488-72666. All cheques/postal orders should be made payable to Orbis
r efer ence car d COVER Publishing Limited, Postage and packaging is included in subscription rates, and prices are given in Sterling.

COVER PHOTOGRAPHY BY PAUL CHAVE

qe

STEVE CROSS

hans

Speech is one of the most difficult tasks for a
robot to achieve and the reason for this is
because the way in which humans learn to
speak is not fully understood. In order to
understand some of the problems associated
with robot speech, therefore, it is necessary
to discuss some of the important theories of
language acquisition. .

The study of human speech has produced two
schools of thought: those who believe that
language skills are innate — something that we are
born with — and those who believe that language
is acquired, or learnt. Those psychologists who
argue that language is innate point out that man is
the only creature to communicate by language.
Those who believe it is acquired cite experiments
with animals that have been taught to
communicate successfully with humans by sign
language.

If people learn speech simply by being exposed
to it then it would make sense to look for a method
of making robots do the same. After all, it would
make life so much easier if a robot could learn the
language just by listening to you speak it. _

Certain limited attempts have been made to
enable a computer to expand its knowledge of
grammar by being given extra examples of
grammatical sentence structures, while other
experiments have tried to allow a robot to learn
new words and morphemes (language elements)
in any language simply by being shown them. But
no system has yet been devised that has succeeded
in teaching a robot to learn speech.

So, for all practical purposes, robot language
skills are dependent on the assumption that
language is innate, that the skills are not learned,

and what we must do is to work out the rules of
language and embed them permanently into the
robot as if the robot had been born with them. In
general, this consists of two distinct phases:
syntactic analysis and semantic analysis.

Syntactic analysis is concerned with the
grammar of what is being said and decodes the
surface structure of the message or encodes the
message into a grammatical form ready for
transmission by the robot. The most common
method of doing this is by means of a ‘parsing tree’
that gradually breaks down, or builds up, a
sentence from the various parts of speech. It isn’t
an easy task — but it is a task that is gradually
being tackled with some success. |

Semantic analysis is much harder and involves
working out the sense of the message (when the
robot is listening to you speak); or working out
what message needs to be conveyed (when it
wants to speak to you). The problem with
semantic analysis is that language is not context-
free — its meaning depends upon the context in
which it is spoken (and this does not apply to the
spoken context alone, but to the entire context of
the message). This context may encompass
knowledge about the state of the world as one
speaks, as well as the knowledge that each party
has of the other. |

This approach has been adopted in experiments
conducted by the computer scientist Terry
Winograd, who wrote a program that enabled a
robot to understand what was said to it and to act
on instructions. However, Winograd used a
computer simulation of a robot that was only able
to operate in a very closely-defined world. In this
case, its world consisted of a number of building
blocks that it was able to manipulate. Winograd’s
program, known as SHRDLU, was able to make a

GIMME
BACK

MY APPLE!

Seeing Is Believing
When a human sees an object,
like an apple, and applies a
name to it, there is an
understanding of the meaning
of ‘apple’. The robot can
visually recognise the object by
matching what it sees with an
internal image, and can repeat
the sound pattern it has stored
to go with the apple. But the
robot has no. understanding that
the object is an edible fruit, nor,
perhaps more importantly, that
the apple actually ‘belongs’ to
the human. This, of course, is
something the human
understands perfectly

‘THE HOME COMPUTER ADVANCED COURSE 761

——

—

Apricot F1

Hearing And Speaking

Robot and computer speech
is fairly simple to create.
Speech synthesis devices,
like the Currah shown here,
are available for even the
smallest home computers.
But recognition is more
difficult because of the
variations in the way humans”
pronounce vowel sounds, and
because of the amount of
processing power and
memory required to handle a
vocabulary of more than a few

_ words. Systems like Big
Ears, and the Apricot F1, have
a small range of recognisable
commands built in, but too
few to cover more than a
minimal number of
operations

J) APPLICATION / ROBOTICS

good semantic analysis, but the world it was able to
make sense of was extremely simple. A robot
working in the chaos of the real world would have
had much greater difficulty understanding what
was being said to it.

In order for robots to employ language usefully,
there must be a message that is passed between
you and the robot and vice versa. It is relatively
easy for robots to speak, because anything that a
robot would be likely to want to express would be
very limited, since its knowledge is so restricted. It
is much more difficult for a robot to understand
what you might want to say to it, because anything
that you might wish to communicate is much more
difficult to analyse.

At one time it was thought that speech input to
robots would be analysed by carrying out a
syntactic analysis of the input and that this would

work has shown the importance of knowledge of
the surrounding world and the context in which
the message is spoken. This has led to experiments
in which a tentative syntactic analysis of the speech
signal is made in order to make a first guess at the
meaning. Then, in the light of what the robot
knows about the world and the likely things that
might be said in its world, the robot revises its
original syntactic analysis in the hope of gradually
homing in on a correct analysis of what is being
said. However, this is far beyond what any
commercially available robot can currently do.
Here, we will look at how contemporary robot
‘systems speak and understand speech.

SPEECH SYNTHESIS
The simplest method of speech synthesis employs
a tape recorder in which a message spoken by a
human being is recorded on tape and played back
by the robot at an appropriate time. This might not
seem to be quite what you had in mind when you
first thought of robot speech — but it is the starting
point of all speech synthesis systems. We will look
at the limitations of this method and then see how
we can improve on them.

762 THE HOME COMPUTER ADVANCED COURSE :

reveal the meaning of the message. But recent.

The most obvious limitation is that a tape
recorder is mechanical, expensive, bulky and
liable to break down. So the next step is to take the
same message and convert it into digital form so
that it can be stored on a chip in the robot’s
memory. This is done using an analogue-to-digital
converter, in which numbers are used to represent
the continuously varying waveform of speech.
This is exactly the same method that is used in the
digital recording of music on, for instance,
compact disc systems.

This method has its drawbacks, too. One of the
main problems is that a digitised signal takes up a
lot of room in memory. Compact disc recording
samples the acoustic signal around 44,000 times
per second with a resolution of approximately 16

COURTESY OF WILLIAM STUART SYSTEMS LT

Currah

bits (i.e. the amplitude of the waveform at any
moment is stored as a 16-bit number, which
enables 2'° levels to be discerned, where 2!° =
65,536). Using this system, each second of the
recording would occupy 88,000 bytes of memory.
Clearly, a spoken message exceeds the storage
capacity of any microcomputer. However, this
sampling rate is only applicable to high fidelity
sound reproduction; a simple speech system could
be operated with a resolution of eight bits, and a
sampling rate of 3,000 samples per second, which
only uses up three Kbytes of memory!

However, in order to free the maximum amount
of memory space, further economies need to be
made. Linguists have found that spoken language
can be conveniently broken up into units of speech
called phonemes. In all, there are generally agreed
to be some 40 different phonemes for most spoken
languages, so it is possible to store the exact
acoustic information necessary to describe each of
these 40 phonemes and then use these as the
foundation of robot speech. Typically, the
phoneme information is held on a commercially
manufactured speech synthesiser chip and all the

robot has to do is to string together those
phonemes to generate the required message. This
message is usually held as a string of phoneme
numbers in the computer’s memory.

Most of the speech synthesisers in use can be
programmed by writing out the message that the
robot is to speak in a phonetic version of English.
Thus, the message ‘Can you come here?’ might be
written as ‘kan yew kum heah’ and this would be
sufficient for the synthesiser chip to produce the
correct string of sounds. This is not exactly the
same notation that linguists use when describing
phonemes — they have their own specialised
alphabet — but it suffices for robots.

At this point you will notice that the robot is no
longer using a pre-recorded message — it is
actually generating messages of its own. Because
of this it is possible to make the robot say anything
we wish without the need for having the whole
message stored beforehand.

So, if we wanted to we could try programming
in some of the rules of grammar in an attempt to
make the robot say quite original things. But, as
already mentioned, the number of different things
that a robot might want to say is fairly limited so
there is no need for too much complexity unless we
happen to be feeling either adventurous, or
curious to see what can be done.

If you have ever heard a speech synthesiser on a
robot you will know that the quality of the speech,
although usualiy comprehensible, is by no means
perfect. This is due to two factors. The first is that
the form that a phoneme takes when used by a
human speaker varies considerably depending on
the phonemes that precede and follow it. The
second is that the overall sound of human speech
varies depending on the meaning that we wish to
convey. ‘Will you sit down?’ and ‘Will you sit
down?’ are two identical written messages, but
they will sound quite different if the first is said by a
courteous host to his guest and the second is
uttered by an exasperated schoolteacher. Some
attempts have been made to capture this
intonation in speech synthesis systems, but it is
difficult to apply as a robot has no knowledge of
the meaning of the words it is speaking.

SPEECH RECOGNITION
The inherent problem to solve when devising a
speech recognition system is that the things we
may wish to say to a robot, and the different ways
in which we might express them, are many and
varied. The problem could be approached by
using a tape recording of everything that we might
want the robot to understand. When we spoke, it
could then simply scan through all of its tape
recordings and look for the one most like the
message it just heard — and that, in principle, 1s
how many robots do recognise speech. They store
internal ‘templates’ of spoken messages and, on
being spoken to, simply look for the template that
offers the best match. These templates are usually
obtained by training the robot — repeating a word
or phrase several times — until it has an ‘average’

ROBOTICS/APPLICATION |... /

template of what we have said. This method
works well if you only have a small number of

_ things to say to the robot and are going to say them
in roughly the same way every time. It is used for
robots that respond to simple commands such as
‘forward’, ‘turn left’, and so on.
However, this is a comparatively simple problem

and is known as ‘discrete speech recognition’
because each spoken item is ‘discrete’ — that is to
say, it is separated from other messages by a
slight pause during which nothing is said.

The real problem emerges when we wish to
speak to the robot using ‘continuous speech’,
which is the type of speech we normally use when
speaking to each other. Try saying ‘It’s a nice
summer day’ and listen closely to what you said.
You will find that it comes out as something like
‘Itssan ice ummerday’ with the words and sounds
running into each other.

The way that people tackle this problem when
they are listening to others speaking is by guessing
what it is that the speaker means to say — not
usually a hard task — and using this guessing to
decode the message. But for a robot to do this it
would have to know a great deal about what was
likely to be said and what it was likely tomean — a
very complex task.

In general, speech synthesis by robots is
becoming quite common, although there is still
room for improvement in the quality of their
speech. Speech recognition is a much more
difficult task and, currently, the best that can easily
be achieved is to endow the robot with an
understanding of speech equivalent to a well-
trained dog that responds to spoken commands,
as long.as there are not too many of them.
However, there is a tremendous interest in solving
all of the problems of robot speech and the next
few years are likely to see substantial advances.

COURTESY OF NEWCASTLE POLYTECHNIC

Hear Me, Feel Me
The Voicemate is a voice-
controlled robot arm developed
for laboratory and industrial use
by the science engineering
department at Newcastle
Polytechnic

THE HOME COMPUTER ADVANCED COURSE 763

GRID IRON

Continuing our investigation of spreadsheet
modelling, we now examine some of the
many advanced features found in Multiplan,
a comprehensive electronic worksheet from
Microsoft for the Commodore 64. |

Microsoft incorporated many advanced ideas,
developed from earlier spreadsheet packages, into
its first spreadsheet program, Multiplan. These
include the ability to act on groups of cells that are
described by name; to sort a group of entries
according to a specified criterion; to split screens,
allowing different areas of the spreadsheet to be
viewed simultaneously; to search quickly through
information held in table form and then output a
requested value; and to perform IF...THEN
conditional constructs, among others. Originally
available only on high-level computers such as the
IBM PC and Apple II, Multiplan has recently
become available on the Commodore 64.

The model we will build with Multiplan
simplifies the task of keeping track of statistics.
The data we use relates to American football, but
the structure can be adapted to other sports.

Once Multiplan is loaded, a standard format
worksheet of 63 columns and 255 rows is
displayed. Rows and columns are both numbered,
so the home cell, in the upper left-hand corner, is
referred to as cell R1C1 — for Row 1 Column 1. A
menu of command options appears at the bottom
of the screen, with a cursor highlighting the first
choice, Alpha. Multiplan menu commands can be
chosen by pressing the Space bar to move the
cursor to the desired command and pressing
Return, or by typing the first letter of the
command. |

Selecting a command often causes a sub-menu
to be displayed, offering a wide variety of options
for formatting data, memory management, and so
on. Pressing a letter key accesses a command, so
you have to type A for Alpha before entering text.
Numbers can be entered directly, but formulae
must be preceded by a plus (+) or equals (=) sign.

The first two rows of the worksheet hold titles.
For convenience, we have formatted the cells from
R1C1 to R2C5 for continuous text, which allows text
to extend beyond cell boundaries. This is
accomplished by typing:

F(ormat) C(ells) R101:R2 C5

then placing the cursor over the word Cont and
pressing Return. The colon is used to indicate a
range of cells. Some columns have been widened
or shortened to accommodate their entries.

There are two main portions of the worksheet:

764 THE HOME COMPUTER ADVANCED COURSE |

one holds information for a specific team over a
nine-week period, and the other is a table of the
won/lost records for all the teams in the same
‘conference’ (see the American Football box for
an explanation of terms). Once the skeleton of the
model has been constructed, much of the weekly
data will have to be entered by hand, with just a
few formulae to keep running totals as the season
goes on.
League Records

Team Performance Record

IAN McKINNELL

The first portion of the worksheet is a table. The
totals in the table must be updated each week,
after the teams have played. By storing the
information in a table, we can take advantage of
one of Multiplan’s advanced features: the SORT
facility. We have entered the team names,
categories and data as shown. The initial ordering
of the teams is based on current standings in the
league. However, the table can be sorted by any of
the categories stored. Multiplan will sort a
specified range of rows in a given column, in
ascending or descending numerical order. Text is,
of course, sorted alphabetically.

As an example of how the SORT function is
we will rearrange the data shown by team name in
alphabetical order. After typing S for SORT,
Multiplan displays the following: |

SORT by column: _ between rows:__ and: __

order:> < |

We want to sort by Column 1 between rows / and
21,in ascending (>) order. Pressing Return causes
Multiplan to reorganise the names alphabetically,
and rearrange the data to match. For example, all
the numbers attached to Miami in our original list
move with Miami to its new position. Simply by
changing the key column in our SORT command,
we can also rearrange the table according to the
highest scoring team, the teams that have allowed
their opponents to score the fewest points, etc.

Sorted Table

Now scroll the screen by pressing the down
cursor arrow and find the second portion of the
worksheet — the individual team performance
record. Two formulae will be used here. The first is
a simple SUM formula, to keep a running total of
the weekly values. Find the column labelled
TOTALS in section two (R24C12). We will want

_ Multiplan to add up the values in each weekly
column. Since we will want to copy the formula so
that totals are found for all our categories —
covering the area from R25C12 through R32C12 —
we need to incorporate a relative cell reference. In
Multiplan, this is done simply by pointing at the
active cells with the cursor.

‘The formula is entered by typing:

=SUM(

and then pressing the left arrow key until the
cursor rests on R25C3. We then type a colon to
indicate that a range of cells is being specified. The
cursor automatically returns to the cell in which
you are entering the formula, so press the left
arrow once, with the cursor resting in R25C11, and
then press Return. The formula should now look
like this: |

=SUM (R[-9]C:R[-1]C)

and totals for the values held in the described
range should be displayed. Now copy the formula
into the range of cells from R26C12 through R32C12
by keeping the cursor on the formula and using the
Copy command:

C(opy) d(own) 7 rows

Use the same process to find the totals for YDS
RUSH and YDS PASS. The SUM formula is placed in
cell R27C3, for yards gained on offense, and R31C3,
for yards yielded to the opposing team. The
formula is copied to the right eight columns, to
cover the full nine-week period.

The second formula, using the IF statement, is a
little more complicated, but extremely useful. In
our model, we will let Multiplan determine
whether a game has been won or lost by

- comparing the point totals in two categories: Points
scored (by our team) and Points Allowed (the
opponents’ score). We need a statement like this: If
Points Scored > Points Allowed, print WIN, else print
LOSS. .
Once again we want relative references, and so

we use cursor movements to point out the
locations of the two values. Place the cursor in
R34C3, labelled WIN/LOSS, and enter the formula:

IF(R[—6]C>R[—2]C, “WIN” ,“LOSS”)
Conditional (IF... THEN) Construct

Note that text used within formulae must be
enclosed in double quotation marks, and
parentheses are required surrounding the
conditions. Now copy the formula across the row,
as before. The model we have created contains
data for nine weeks. Because of the screen size, we
cannot see either the labels on the left edge of our
team record, or the totals on the right. But we can
split the screen into two windows, which can be
scrolled together or independently.
We will want to split the screen vertically at

column 3, so we press W(indow) and S(plit),
followed by V(ertical). Multiplan will then display :
WINDOW SPLIT VERTICAL at column:__linked YES/NO.
Split Screen Display

You need to input column 3, move the cursor to
NO, and press Return. If the windows are not
linked, they can be scrolled separately. Now the
labels can be seen no matter what portion of the
worksheet is being viewed. To close the window,
you type W(indow) C(lose), followed by its number.

In the next instalment of the course, we will be
looking at one of the more refined offerings
among spreadsheets — Lotus 1-2-3.

KEVIN JONES

American Football
For those unfamiliar with
American football, here is a
brief explanation of the terms
used. Two teams of 11 players
take turns trying to movea _
cigar-shaped ball across a goal
line. Opposing goals are 100
yards apart. The ball can be
carried by a runner, thrown
forward as a pass, or kicked
between the goalposts. Three —
points are scored for a kick
(called a field goal); six points
are awarded for a Carry or pass
across the line (called a
touchdown); and one for a kick
following a touchdown
(appropriately called a point
after touchdown).

Each team has four
attempts, or ‘downs’, to move
the ball 10 yards closer to the
goal. If successful, they can
continue toward the goal with
another four downs. When a
player carries the ball, itis
called a rush, and the number of
yards ‘rushed’ by a team is an
indication of how far the ball
has been carried during the
game. The number of yards
‘passing’ means how far the
ball has been thrown.

There are two ‘conferences’.
in the National Football League
(the USA's primary professional
league) — the American
Conference and the National
Conference. Teams play a 16-
game season that begins in
September and culminates in
the Super Bowl in January. The
Super Bowl is contested by the
best team from each
conference

THE HOME COMPUTER ADVANCED COURSE 765

o©o0000000

All Mapped Out
The first step in designing an
adventure game is to draw a
map showing the various
locations that can be visited
by players. Each location on
the map has a brief
description of the scene,
indicating whether any
objects are present and if the
location has some special
significance within the
framework of the game.
Numbering the locations
enables the map to be easily
coded and stored by the
program

POSSIBLE MOVES
FROM LOCATION 7
EX$(7) = "08000306"

PROGRAMMING PROJECTS/ ADVENTURE GAME

SPIRIT OF ADVENTURE

Adventure gaming is an extremely popular
pastime among home computer users. But
playing a game is only half the fun; writing
your own adventure is an enjoyable and
creative activity. We begin an extensive
programming project in which we take you
through all the stages of building up an,
adventure game.

Adventure game playing became popular in the
early 1970s when the game Dungeons and
Dragons was devised. In this game, the players
take on the roles of various characters within an
imaginary world designed by the Dungeonmaster.
This imagined world generally consists of an
intricate maze of rooms, containing objects and
perils, which the players have to negotiate.
Generally, the aim of the game is to escape from
the maze, usually rescuing someone or something

along the way. Mainframe programmers were the
first to apply the game to computers, constructing
complex labyrinths for other mainframe users to
wander through. The advantage of computer-
based Dungeons and Dragons was that the

* Dungeonmaster and the players did not have to be
present at the same time, allowing individuals to
play whenever they wished. Since then the
Dungeons and Dragons type of game has widened
its scope and appeal considerably — the Multi-
User Dungeon (see page 384) is an excellent
example of how sophisticated some have become.

Some adventure games are purely text-based,
whereas others make use of colour and graphics to
provide screen images. However, some critics
argue that the addition of graphics uses up
valuable memory space that could otherwise be
used to add intricacies to the game’s structure.
They also point out that a computer graphic
picture of a scene or location is no match for one’s

DAVID HIGHAM

own imagination conjuring up a picture based ona
textual description. However, the rise in the
popularity of adventure games is almost certainly
attributable to the enhanced visual appeal that
graphics give, and, although some recent micro
games use only simple pictures to enhance the
text, others attempt to make the game visual.

In our programming project we shall be looking
at the techniques involved in programming an
adventure game. During the project, you will be
given sections of a listing to an adventure game
called Digitaya, which will build into a complete
program. In this game, the player is cast as an
‘electronic’ agent given the task of descending into
a microcomputer to locate and rescue the
mysterious Digitaya from the clutches of the
machine. There are many dangers and difficulties
along the way and you have to use all your
knowledge of computers to good effect to escape
unharmed. The program is, as far as possible,
written in ‘standard’ Basic, with ‘Flavours’ given
where appropriate. Therefore, provided you have
sufficient memory capacity, the program will run
on your computer. As we are going to discuss the
various programming techniques in detail, it
would be difficult not to give away many of the
secrets of the game, and this would spoil, to some
extent, the pleasure of playing it when it is
complete. We will, therefore, construct a shorter |
game called Haunted Forest, in parallel with
Digitaya, which will demonstrate the techniques
and algorithms used to build the larger game.

MAKING A MAP
The starting point for the design of our adventure
game is to construct a map of the fantasy world
that we are imagining. On this map, we mark out
the various locations within the world, the position
of any objects to be found, and signify those
locations that are considered ‘special’.
locations on the map will simply allow the player
to move in and out of them, and pick up or drop
any objects that are there. Special locations may be
perilous (a swamp or a place where a dragon
lurks), or they may require a series of special
actions to be performed before you can enter into,
or exit from, them.

The best way to begin making a map is to
consider roughly how many locations are needed
for the game. Haunted Forest has 10 locations and
was designed on a five by five grid (as shown in the
illustration), whereas Digitaya has nearly 60
locations and was originally designed using a 10 by
10 grid.

The grid squares are initially unnumbered and
the designer starts by filling in locations on the
map. On the Haunted Forest map there is a path,
two tunnels, a swamp, a clearing and a village. The
positions of several objects are also marked at the
bottom of the squares where they are located.
Those locations marked with an asterisk (*) are
‘special’ and will be treated in a different way to the
rest of the locations.

Once the layout has been finalised we can

Most >

number each location. The only _ special
consideration we have taken into account in
choosing the location number is that all the special
locations have been numbered first. The order in
which the others are numbered is not important,
but once numbers have been selected it is
important that they are not changed later.

PROGRAMMING THE MAP DATA
The first programming task is to convert the
information in the map into data for the program.
There are many ways of doing this, but what we
will do here is use two one-dimensional arrays to
hold the map data. The first array, LNS(), holds
descriptions of each location. For example, for
location 7, LNS(7) will contain ‘ona path’. When the
data is used later in the program to describe a
location it will be prefixed by the words ‘You are’.

The second array, EXS(), holds data about the
possible moves that can be made out of a location.
Both of our games limit themselves to four:
directions: North, East, South and West. EXS()
provides information about the location number
to be moved to for each of the four directions. The
data is held as a string made up of eight digits. The
location number for each direction is entered in
the order NESW, using a two-digit number for
each direction.

For example, location 7 has exits to the North,
South and West, but none to the East. The first two
digits of EXS(7) are 08 (not just 8), which shows that
location 8 is to the North. The second pair of
digits, 00, indicates that there is no exit in this
direction (East). The digit pairs 03 and 06
represent the locations found to the South and
West of location 7. Using this system, up to 39
locations could be specified; if more than this were
required then the data for EXS() would have to be
entered as groups of three digits.

The three objects in the Haunted Forest are read
into another array — IVS(,). This two-dimensional
array keeps track of the position of each object as it
is moved around the forest. Each object has a
description and its starting location on the map.
For example, IVS(C,1) may be GUN, and its position
at the start of the game is given by IVS(C,2), As the
objects are carried around during the game the
position members of the array will be updated
accordingly.

At the end of the map data in both of our listings
there is another item of data. This is a ‘checksum’
and is given to ensure that the direction data has
been typed in correctly. This is done by calculating
a running total of the data values, which is
compared against the checksum. If these are not
the same then a mistake has been made and the
program will stop running. You will notice that in
Digitaya two checksums are used. This is because
the total sum of all the direction data is too large to
be held easily in one checksum, so a total for the
left-hand and right-hand four digits is calculated
separately. In the next instalment of the project, we
will design routines to handle and enrey the map
data assembled here.

THE HOME COMPUTER ADVANCED COURSE 767

61S

bd

ace REM E READ ARRAY DATA S/R”
—6mh AO REM ee READ INVENTORY -

DIM IN oC 2 61ia

6130 REA

6149
6120

«160 REM ex READ Location Be
6170 DIM LINE (3 :
(618@ Cis:

190 FOR C=11054.
oe
E18 €

6230 NEXT
624@ READ

250 READ

=i TOS
LYE (C 2)

EXIT Data ~~
ees) -

220: fen INITIALISE CHECKSUNS

LNE(Exec) ©
CLl=C1+VAL. (LEFT#(EX#(C) ,4))

Ue=Cet+VAL. (RIGHT $ | ERE), A)?
C

CAs IFCA:. C1 THEN PRINT" CHECKSUM ERROR":

Cer TP Cr.

oa
REM **x* INVENTORY DATA x«x*
DATA

DATA
ARD , 28
6308 DATA
NG oo

REM ¥xe* LOCATION &
DATA
DATA
DATA

@ DATA
DATA
DATA I
DATA.
DATA
DATA
pata
DATA
‘pata €

DATA OQ

DATA
a DATA

,ovani4e0
2a DATA
6490 DATA
S800 DATA

6510 DATA
= 6520 DATA
6550 DATA |

-—66540 DATA

46550 DATA

6560 DATA

6578 DATA

4880 DATA
659@ DATA
6600 DATA

6610 DATA
66620 DATA
— 6650 DATA
664@ DATA
(6680 DATA
6668 DATA
6670 DATA
66482 DATA
6698 DATA
6&70@ DATA os

a7i@ pete
6720 DATA
Osos
6730 DATA
6748 DATA
6758 DATA
6768 DATA

«6770 DATA
6780 DATA
6798 DATA
SB00 DATA
B18 DATA

IN THE

ADDRESS NUMBER A5 BEY 34. LASER SHIELD, 25

TICKET 10

DIGITAYA, 3Q, CODE ROOK, » LY BURPPER ACTIVATI

EXIT DATA ¥ex®
TY OUTLET, @@@@Q000
LISER PORT, @@a9a1aa

THE CASSETTE FORT ,@@110000
THE JOYSTICK FORT,@@13000¢ —

(A TRI-STATE DEVICE, @@17e00@
THE ARITHMETIC & LOGIC UNIT, Qasig@16E

T THE GATEWAY TO MEMORY, pa4oaaoa
THE 1/0 HIGHWAY, a9a@ae@el

IN THE 1/0 HIGHWAY, 1Q@@Q080%
THE 1/0 HIGHWAY, 11 @aacea
THE 1/0 HIGHWAY,120@1003
THE 1/0 HIGHWAY, 1353110@
THE 170 HIGHWAY, 14001204
THE 170 HIGHWAY, 15@01 300
THE I/0 HIGHWAY A SIGN SAYS

IN THE
THE

THE DATA REGISTER, @@@617a0
AN 8 LANE HIGHWGOY, 16001805
ON 8 LANE HIGHWAY, 17001982
AN 8 LANE HIGHWAY, 1aQ@2aa0

IN AN @ LANE HIGHWAY, 19292.
AN 8 LANE HIGHWAY,
AN @ LANE HIGHWAY .2
AN 8 LANE HIGHWAY,
AN @ LANE HIGHWAY, 2325¢

IN THE CHARACTER MATRI , 26360024
HIGH IN THE MEMORY, 2@738e5o3
IN THE MIDDLE GF MEMORY , 282 :
IN THE MIDDLE OF MEMORY, 29
LOW IN THE MEMORY,@o542e27a _
IN THE ACCUMULATOR S LAIR, a@@e@cae
IN @ LONG CORRIDOR, @0420@06
IN AN INDEX REGISTER, Siaa@aaa
LOW IN THE MEMORY ,544@342e8

MIDDLE OF MEMORY, 33.55
HIGH UF IN MEMORY, 24383426 |
IN THE CHARACTER MATRIX, 35370025
IN & RANDOM VECTOR TABLE, aaqgonaan
HIGH IN MEMORY OVERLOOK ING A HIGHWAY , 398

IN THE MIDDLE agonsen4
IN MEMORY -— TO

OF MEMORY,
THE EAST

LOW IN MEMORY ,Q@@@@4@an4
IN A CORRIDOR, @0420021
IN A CORRIDOR, @@440042
IN A CORRIDOR, g@@@454%
IN THE ADDRESS REGISTER, gaeosena
ON A 16 LANE HIGHWAY, 45004700
ON A 16 LANE HIGHWAY, 44004800
ON A 14 LANE HIGHWAY ,470@4900
ON A 16 LANE HIGHWAY A LARGE GATE LOOMS

TO THE WEST, 490050q7
6820 DATA
6830 DATA
6840 DATA
685@ DATA
6860 DATA

QN A 16 LANE HIGHWAY ,49005100
ON A 14 LANE HIGHWAY, SegaS5zag
ON A 16 LANE HIGHWAY ,S1@@08ag
IN A VECTOR YQ. MEMORY ,@Q290012
LOW IN MEMORY ,@@41 3329

6870 REM ** CHECESUM DATA xe
= 6880 DATA. 1Q@16?, 1a. ce

768 THE HOME COMPUTER ADVANCED COURSE

SP2THEN PRINT" CHECKSUM ERROR": ST.

THE ‘TRISTATE: 26,DATA CREDIT C

 &B59
o2é

‘SOUT a

IS A GATEWAY,410 ©

— 686a
— 6065

68708 CC

68080

— eaea :
— 6120
6110

(6122
6128

6140 :

6124
(61468
6&1 7@

READ

NEAT
e:

2

REM e* OBJECT

DATA GUN, ia, pee oo

FOR €=1 To
LNE(C),
+UAL (EXE (C)) s REM CHECKSUM
c

READ es TFep<>cc

ig
EX#(C) CS

ore

‘pata ee

REM #¥ MAP DATA eH

DATA
DATA

4 DATA

ye TR

6.88

DATA
DATA
DATA

DATA
DATA

A DATA

DAIS

REM *«* CHECESUM DATA ee
Sal DATA

NEAR

IN &

IN A.

NEAR

ON &

ON

ON
OM ¢

ON |
Lh

ES eae

RETURN —

a TUNNEL ENTRANCE, 20020900
SWAMF , gaaaaaae
VILLAGE, @7a000a0 .
A TUNNEL ENTRANCE, B5Q60000
PATH, 2220400
FATH, @2070004
PATH, QAQI0204
FATH, @7800702
PATH, @110@800 |

CLEARING, aonoowe?

121

THENPR INT" CHECKSUM ERROR": STOP

HOLLERITH CODE
_ Designed by Herman Hollerith (1860-1929) in
1888, the Hollerith code is a method by which
letters of the alphabet, the decimal digits 0 to 9,
and special characters can be coded onto a
punched card. The card is divided into 80 columns
and 12 rows. Each column represents a single
character by holes that are punched in either one,
two or three of the rows. The card is then read by a
tabulator machine, or card reader, which
processes the information.

HOLOGRAPHIC MEMORY
Recently-issued credit cards and bank cards carry
a small three-dimensional imprinted design
known as a ‘hologram’. This is produced as an >
interference pattern on photographic material,
usually by a source of high-intensity radiation.
Banks and credit card companies are hoping that
the use of holograms will reduce the amount of
credit card fraud by making it more difficult to
forge cards. However, this particular application is
insignificant compared with their enormous
potential as a mass storage medium for computer
data.

Holographic memory has been a reality in
laboratories since the early 1970s. It involves
coding binary information as an interference
pattern on a photographic surface with a laser
beam. Data can be read back from the hologram
by projecting a low-power laser beam from
behind. Holographic memory has the same
advantages that laser discs have over other storage
media — a holographic surface is highly resistant
to environmental factors such as dust and
extremes of temperature, as well as surface
scratches. A holographic device created in the late
1970s could store 200 million bits of data on a 4in
by 6in plastic card.

HOST COMPUTER
The terminal or computer that controls operations
within a network is called the host computer. It can
have many functions. In a microcomputer local

area network (LAN), the host computer is
primarily a ‘server’: it handles files, controls the
flow of information and may act as a printer
depository for the other nodes of the system. With
more powerful systems, particularly in mainframe
networks, the host computer may act as a
switching device for time-sharing or multiple-user
applications. = Within a hierarchical
communication system, with many levels of
computer involvement, a host computer may act
as a controller on one level, and at the same time
serve as a working node on another level.

HOUSEKEEPING
Housekeeping tasks are program or operating
system routines that keep computer operations
running smoothly, without having a direct effect
on the actual outcome of the program. The
purpose of such routines is to keep things orderly
and organised. Initialisation, garbage collection
and memory management are typical
housekeeping routines.

HUMAN FACTORS ENGINEERING
Successful computer systems design requires the
analysis of a multitude of factors. Many of these
factors are systems-based — including speed of
processing, input/output management, and so on.
But computers are used by humans, so systems
designers must take human factors into account as
well. The recent science of human _ factors
engineering aims to incorporate traditional
systems design and engineering with marketing
and operational psychology to create a total man-
machine system. Many new users of computers
fear the power of the machines and feel intimated
by them. To overcome this very deep-rooted
emotional block, engineers design systems to be
‘user friendly’ and ‘intuitive. The use of menus
and straightforward language in software, and the
development of ‘user interfaces’ in hardware —
such as Apple’s mouse and icon system, or
Hewlett-Packard’s touch screen — aim to make
the computer less frightening. A very recent
development in human factors engineering finds
interior designers working with systems design
teams to create a total man-machine environment.
The location of work surfaces, the positioning of
computers, and other design elements all come
together into a uniform system.

HYBRID INTEGRATED CIRCUIT
Large circuits can be assembled by combining a
number of smaller circuits, each of which may be
constructed by using a variety of technologies. The
smaller components are placed on an insulating
base material, then linked with conductive tracks
that are printed on the base in several layers. ‘The
resulting circuit, which can then be connected to
additional chips, transistors and _ other
components, is called a hybrid integrated circuit,
or ‘hybrid IC’ for short.

Herman Hollerith
The inventor of the Hollerith
Code for processing data on
punch cards, Hollerith founded
the tabulating machine
company that became IBM

THE HOME COMPUTER ADVANCED COURSE 769

THE BEASTY
WITHIN

Robotics is a 1 topic i in "the forefront of
developments in computing, but until
recently robots have been used mainly in
heavy industry. Now robot designers are
turning their attention to the home
computer owner. Budget-priced robots are
gradually becoming available and_ the
Beasty i is one e of the first.

The Beasty is sptiddd 4a MeO al al can Be
assembled by the user with the aid of a pair of
screwdrivers. Also provided with the kit is the
cassette-based software that contains the Robol
operating system used to control the robot arm.
Two manuals are supplied. The construction

booklet begins with a long introduction on the
history of robotics, before going on to the actual
construction details. The novice may find the
sheer number of parts and the somewhat
complicated instructions a little daunting;
illustrations are provided, but these too could be
more helpful. However, even the beginner will be
able to put the arm together successfully — but it
may take a little time to do so. As yet, it is not
possible to buy the Beasty ready-made, although
manufacturer Commotion claims that it will put
one together if asked.

Once assembled, the Beasty consists of a base
supporting a joint that allows lateral movement.
To this joint is connected a short aluminium rod,
which is attached to the upper part of the arm by a
second joint. A third joint connects the forearm.
These joints are powered by servo motors, each of
which controls two short lengths of stiff wire,
which are connected to the arm’s ‘skeleton’. As a
servo motor turns it will pull one wire towards it
and push the other in the opposite direction, thus
turning the joint and moving the arm. A servo
motor works by translating digital pulses into
movement. The motor receives a series of pulses at
a particular frequency, and these pulses are
interpreted by the processor as an angle of
movement. While the frequency remains
constant, the motor will hold the arm in its current
position; a change in the pulse frequency instructs
the processor that a new angle is required and so
the arm will move.

The FP128 servos used in the Beasty can
generate 3.5kg/cm of pull. This means that at one
centimetre along a shaft the servo is capable of
lifting 3.5 kilograms, while at 10 centimetres along
it can lift 350 grams. This is an important point to
consider when weights are lifted — obviously, the
servo at the ‘shoulder’, being furthest away from
the weight to be lifted, will have the greatest strain

770 THE HOME COMPUTER ADVANCED COURSE

SS ee

COURTESY OF COMMOTION LTD ~

placed on it.
The servo processor is housed in a small black

box that is not attached to the arm itself. This box:

has sockets for the connection of up to four servo
motors (the fourth connection is for an optional
motor that may be used to operate a ‘claw’ or
similar gripping device at the end of the forearm).
There is also an input socket that interfaces with.
the BBC’s user port, and a power lead that plugs
into the auxiliary power socket of the computer.

Once the cassette software has been loaded, the
screen displays a prompt to remind the user that
the system is in Edit mode. A program line in
Robol consists of a line number, a command, and
a series of numbers, each of which corresponds to
one of the four servo motor options. If the line
contains the command MOVE, the numbers
correspond to the frequency of the pulses that

- These motors provide the power _
at alters the degrees oC

freedom of the varlous rods

Optional Grabber - .
Only one of these grabbers is

actually connected to the servo.
_ The grabber grips by pressing
| the moving grab against the

static one

= Metal Plate
The base of the arm consists -
a metal plate. However, care

__ should be taken in lifting objects
as this could easily topple the

Beastly 0 over

IAN McKINNELL

maintain the servos in their current position.
These numbers may be altered by the user, and
while the system is in Edit mode the servo motor
being adjusted will move as changes are made,
allowing the arm to be positioned to the user’s
satisfaction. Once the operator is happy with the
positions of each of the motors, Return must be
pressed, whereupon a new Robol line is displayed
and the next series of movements can be
programmed. |

The arm can be made to carry out a complete
sequence of movements if the FO function key is
pressed. The program can be made to run from
any line by first pressing F1 followed by FO (this
runs from the start of the program) or by changing
the current line number by using the cursor keys.
At the end of the program, the sequence of actions
will automatically repeat. Should the user wish to
stop the program, a MOVE instruction must be
changed to STOP.

TIMED DELAYS
While executing a series of MOVE instructions, the
arm can be made to pause by incorporating a WAIT
instruction, followed by a number. This works by
accessing the TIMER 1 pin of the user port,
generating an interrupt. As the timer works in
units of 1/100th second, WAIT 100 will produce a
one-second delay before the next instruction is
carried out.

The action of the arm can be greatly accelerated
by changing the MOVE command to JUMP. Two
timing statements are also included — JDELAY and
MDELAY. The Beasty has a built-in delay that
occurs before each line executes. This has a default
value of 20 — i.e. 1/5th second — but this value
may be changed by using JDELAY for JUMP
statements and MDELAY for MOVE instructions.

The Robol operating system is easy to use, and
it is a simple task to program the arm to perform
complex movements within a matter of minutes.
The operating manual is brief but perfectly
adequate, although advanced programmers may
find that it gives insufficient information for more
complex programming. The Beasty may be
controlled from Basic by using the Driver
program; this accesses the BBC Micro’s user port
in much the same way as the examples we have
given in our Workshop series.

Commotion has also included a short program
that allows backup copies of Robol software to be
made. Unfortunately, most BBC disk drives use
the auxiliary power socket on the BBC Micro, so
the Beasty and a disk drive cannot be connected at
the same time.

However, despite such minor niggles, the
Beasty is certainly a worthwhile introduction to
the field of robotics. It might be said that this is a
device in search of an application, as the robot arm
cannot really be said to be truly useful and will

probably be purchased by only the most
enthusiastic hobbyists. However, it is sure to be of
value in schools and colleges, where it can be used
to teach students the principles of robotic control.

THE HOME COMPUTER ADVANCED COURSE 771

Two-Way Drive
The maze solving program
interprets the maze in two ways.
As the maze is read in from data
statements it is stored in a two-
dimensional array, the start and -
finish points also being held
initially as co-ordinates. In order

LIZ DIXON

to solve the maze the program
must treat each square in the
maze as a ‘node’ in a tree.
Rather than using the initial co-
ordinate system, each square is
therefore numbered in order,
starting at the top left-hand
corner of the maze

> X

In n previous instalments of Workshop we
developed the hardware and software to
drive a two-motored vehicle and control its
direction (see pages 585 and 612). Now we
develop an ‘intelligent’? program that will
steer our two-motor vehicle through a maze
by selecting the shortest route.

The first stage in constructing a maze is to decide
on the area that will constitute the maze. This
could be a table top or an area on the floor. The
area designated should then be divided into a
number of squares, the size of each square being
dependent on the size of the vehicle that will be
used to negotiate the maze. Each square should be
large enough to allow the vehicle to pivot through
360° within a single square. The area can then be
marked out as a grid. Objects such as books, cups,
or short lengths of wood can then be placed in the
area to form the maze.

The program requires you to specify the —
dimensions of the maze, and the locations of
squares in the maze that are occupied and those
that are free. The easiest method of doing this is to
use a binary code: 1 indicating that a square is
partially or fully occupied by an object, 0
indicating that the square is free. In order that the
maze data does not have to be entered each time
the program is run, this information must be
written as a series of DATA statements. The final
four items of data are the start and finish point co-
ordinates. We can imagine the origin of the co-
ordinate system as having its origin at the top left
corner, the top row being row 0 and the leftmost
column being column 0. This maze corresponds
to the following DATA statements:

0 DATA 4,4:REM DIMENSIONS OF MAZE
DATA 1,0,0,0,0,0,1,0
DATA 0,0,1,0,0,0,0,0
DATA 1;1:REM COORDS OF START

2 DATA 2,3:REM COORDS OF FINISH

Finding a route through a maze does not present
many difficulties. We can design a program that
will trace a route from the start point, backing out

of blind alleys and retracing steps until the finish
point is eventually stumbled upon. The eventual
route found (without the detours into blind alleys)
may or may not be the shortest possible route. If
we want to find the best route between the start
and finish points then we must adopt a method
that tests all possible routes between the two
points. It is worth noting that our program
interprets ‘best route’ as the route that uses the
least number of squares.

772 THE HOME COMPUTER ADVANCED COURSE

Tree Structure
Before the best route through
the maze can be found, a ‘tree’
representing the relationships
between squares within the
maze has to be constructed.
Each node is considered in turn,
creating lower levels of nodes.

Level 1 nodes are one square
removed from the start; level 2
nodes are two squares removed
from the start, and so on. Itis
fairly straightforward for us to
draw the tree, but implementing
this structure in BASIC is more
difficult

We can make the task of testing each route
easier by enforcing a structure on the maze data
that represents relationships between squares.
The data structure that most lends itself to this
application is a hierarchical tree. Beginning with
the start point as the ‘root’ of the tree, we can build
up a second generation of squares (or ‘nodes’)
that are one square removed from the root. A
third generation of nodes can be built from these
second generation nodes, and so on. We can draw
a tree for any maze by numbering each square and
following the rule that descendants from any node
are drawn from left to right in the order North,
East, South and West of the parent node in the
original maze.

This simple maze can be solved in five ways,
without retracing one’s steps. Three possible
solutions are shown above, as routes through the
tree and as actual routes through the maze. It is
obvious to us that route 2 is the shortest route, but
this is because we are able to evaluate the tree
laterally; that is we can consider the maze as a
whole. The computer must solve the tree in a
linear way, taking each possible route
systematically until the finish node is found or a
blind alley is reached. In the first case a record of
the sucessful route must be kept; in the second the
path taken must be marked as a blind alley before
restarting from the root node. The program will
continue to travel through the tree until all
branches from the root node have been tried.

Basic does not lend itself readily to search
algorithms of this type and the programming can

often appear clumsy and unwieldy. Languages
such as LOGO and ALGOL are much better equipped
to carry out this sort of task. In BAsic we have two
main tasks to carry out. Firstly we must derive our
tree from the maze data, as presented to the
program. And for each square of the maze we
must have four pointers showing which square lies
in each of the four directions. The best way to
store this pointer system is in a two-dimensional
array, TR(N,D), where N is the square number and D
is the direction 1 to 4. Thus in our simple maze,
TR(9,1) would be 5— the square lying to the north
of square 9. When the square in a particular
direction is not free, or there is a boundary to the
maze then this can be marked by a special value,
for example -1.

As the tree is negotiated the route taken is
stored in a pseudo-stack, implemented using a
one-dimensional array and a variable, D, to point
to the next available space on the stack. The
shortest route encountered at any time is also
stored in a one-dimensional array, with the
number of steps for the route stored in the first
element of the array. |

When the program has worked its way
through the tree, a record of the best route will be
held as a series of square numbers. On the
assumption that the vehicle originally faces north
in the start square, it can be directed using the
simple mathematical relationships between the

—
—

direction to be travelled and the difference
between two consecutive square numbers in the
route array. For example, in our simple maze, a
difference of +4 would indicate north, -4 indicate
south, and so on. We must then calculate the angle
to be turned through to change direction, before
proceeding one square forwards. As the vehicle
uses simple DC electric motors, turning angles
and distances travelled are governed by the length
of time that a particular combination of motors is
on for. To make practical use of the program some
initial experiments need to be done to determine
the time intervals required to turn through 90° and
to advance one square. This information should
be entered in the variables AF and FF, respectively.
The BBC version requires units of 1/100th of a
second, the Commodore 64 version requires 1/
60th of a second units.

IAN McKINNELL

For The BBC

Make the following
changes:
3138

8298

8300

8310

8320.

DDR=&FE62 : DATREG=&FE6O |

?DATREG=93

TIME =08

REPEAT UNTIL TIME >=AF

?DATREG=0

?DATREG=5

TIME =0

REPEAT UNTIL TIME >=FF

?DATREG=0

The list processing facilities of Loco make it
ideal for a variety of games applications.
Here, we show you how the language can be
used in the development of a text-based
adventure game. We approach the
implementation in a general way, to allow
you to build up your own game by defining
the locations, objects and perils yourself, —

In this article, we'll restrict Sueines to looking at
the more general aspects of programming an —
adventure game and deal with the specific details
for a particular game in the next instalment.

In all adventure games there are five basic
activities that the player should be able to:
perform: you need to pick up objects or dro
them, to list the things you are carrying, to loo
your surroundings and to move about th
from room to room (or location to loca
is these basic commands that we will
of all. For simplicity, we will restri
commands to one of two types:
(such as LOOK) or verb-nou
RING). The program will
called INVENTORY, which f everything
the player is currently , and the other,
called simply CONTENTS, will be a list of the objects
in the current room.

The first command we will define is INVENTO RY:

TO INV
PRINT [YOU ARE CARRYING:]
IF EMPTY? :INVENTORY THEN PRINT [NOTHING]
ELSE PRINT :INVENTORY

END

Notice that this procedure uses the full form of the
IF statement:
caction2>. The command for picking up an object
will be GET:

TO GET :ITEM
IF MEMBER? :ITEM :CONTENTS
THEN GETIT :ITEM ELSE PRINT ll
CAN'T IT’S NOT HERE]

END

MEMBER? is a primitive that tests
element belongs to a list. ‘To ° get
to do two things: add it to th
remove it from the list of
procedures that do these

TO GETIT ‘ITEM
ADD.TO.INV :IT
REMOVE.FROM.R

Bi (es Senna

the

vO lists: one

tory and
Gee
ae

le are the

774 THE HOME COMPUTER ADVANCED COURSE

¥ as DROP

IF <condition®y THEN <action1> ELSE

TO ADD.TO.INV :ITEM
MAKE “INVENTORY SENTENCE :
“INVENTORY

END

TO REMOVE
MAKE “CONT
-CONTENTS

END

The last of th eleting an
element s one of the

he previous instalment.

‘tLIST
FIRST :LIST THEN OUTPUT BUTFIRST

PUT SENTENCE FIRST :LIST DELETE :ITEM
OTFIRST :LIST

e command for dropping an object is
implemented in a similar way:

TO DROP ITEM.
IF MEMBER? :ITEM :INVENTORY THEN DROPIT
-ITEM ELSE PRINT [YOU DON’T HAVE IT TO
DROP!]

END

TO DROPIT :ITEM
REMOVE.FROM.IN
ADD.TO.ROOM :IT

END

TO REMO

ocedures we have given
t their operation. First of

e two global variables —
Y and CONTENTS — and then test for the

g commands:

MAKE “CONTENTS [SWORD SPEAR TORCH]
MAKE “INVENTORY [LANTERN]
GET “SWORD
DROP “LANTERN

Now examine CONTENTS and INVENTORY: using
these statements: |

PRINT :CONTENTS
PRINT :INVENTORY

and check that they are correct.
Notice that we used quotation marks before the

a eae ee . < =

names of the objects in both the GET and DROP
commands. Using quotes this way might be
second nature to a LOGO programmer, but it is_
likely to be very confusing for an adventurer who
knows nothing about the language. In order to
allow the more natural GET SWORD to be used, we
must define SWORD as follows:

TO SWORD
OP “SWORD

END

Of course, we'll have to do this for each noun used

in the game.
~The command LOOK will print a description of

the current room, a list of its co
possible exit routes from the room
need two further lists — a descrip
exit list. In order to allow fo
descriptions taking up more than o
the screen, the description list is defi
lists. For example:

MAKE “DESCRIPTION [[YOU ARE
ENTRANCE][TO A CAVE]]

To keep a record of how the
every room is assigned
simply a list of
direction and a ro

MAKE “EXIT.LIST

We can now define f€

TO LOOK |
PRINTL :DESCRIPTION
PRINT *
PRINT [YOU CAN SEE:]
IF EMPTY? :CONTENTS THEN PRINT [NOTHING
SPECIAL] ELSE PRINT :CONTENTS
PRINT “
PRINT [YOU CAN GO:] PRINT.EXITS :EXIT.LIST.
PRINT *

END

Two special print routines have been used in this
procedure to make the display easier to read.
PRINTL is used to print several lines of text.

TO PRINTL :LIST
IF EMPTY? :LIST THEN STOP ~
PRINT FIRST :LIST
PRINTL BUTFIRST :LIST

END

PRINT.EXITS prints the exits from the room without
printing the room numbers.

TO PRINT.EXITS :LIST-
IF EMPTY? :LIST THEN PRINT “ STOP
MAKE “EXIT FIRST :LIST
PRINT1 FIRST :EXIT
PRINTA °°”
PRINT.EXITS BUTFIRST :LIST

END

We can describe everything that is known about a
room in the game by putting together the three
sublists: the description, the contents and the exits.

following p

For example:

MAKE “ROOM. [Itvou ARE STANDING AT THE
ENTRANCE][TO A CAVE] [SWORD][[N 4)[E 6]}]

Given that ROOM1 is defined in this way, we could —
split it into its individual components with the

TO ASSIG
MAKE “ROO
MAKE “DES
MAKE “CONTEN®®
MAKE “EXIT.LI

END

> variable ROOM1’. We ~
Ising this form shortly

ROOM ©

¢ io extend it so that it can be used more

ly for any room. We do this by using a

consisting of a combination of its two inputs (thus,
WORD “ROOM. -HERE would output ROOM). We
then assign this name to the variable ROOM.NAME _
— thus :ROOM. NAME 1 is ROOM. 2. We can now — ;

THE HOME COMPUTER ADVANCED COURSE 775

, this siosetine ors for ROOMA only oe

global variable, HERE, which contains the number — : :

of the current room. Let’s sayitis2atthemoment.
The Loco primitive WORD outputs a word —

ROOM as THING :ROOM.NAME. It is now possible for you to draw up a map of the

TO ASSIGN:VARIABLES — 3 locations in your adventure game, and list the

~ MAKE “ROOM.NAME WORD “ROOM. :HERE descriptions of them (with contents and exits). In

MAKE “ROOM THING :ROOM.NAME the next instalment, we will conclude our general

MAKE “DESCRIPTION DESCRIPTION :ROOM discussion by looking at movement between

MAKE “CONTENTS CONTENTS :ROOM locations and how ‘perils’ are implemented. We

MAKE “EXIT.LIST EXIT.LIST :ROOM will then begin considering a complete adventure

END game as an example of what can be done.

716 THE HOME COMPUTER ADVANCED COURSE

———___-—___——

We continue to develop ‘the Metter
program, which we began on page 758.
First, we must complete the set of routines
that we need for the module that handles
input and output, and then construct the
LEITLS itself.

There. are 3 four a more 2 routines to develop for the
I/O module: GETHX2, GETHX4, PUTHEX and
PUTCR. The first two processes are used to get
hexadecimal digits from the keyboard: GETHX2
gets a two-digit hex number and GETHX4 gets a
four-digit number. The first thing we must do,
when designing these routines, is decide whether
we will insist on two or four digits always being
entered (which is easier to program but less user-
friendly), or allow fewer characters followed by a
Return. A further problem is whether to allow the
use of a backspace character to delete characters
already entered.
We will use the simplest method for the GETHX4

routine: four digits must be entered, and the
backspace will not be allowed. The 16-bit value
(signifying an address) can be returned in the D
register.

GETHX2 is more of a problem if we consider the
circumstances in which it will be used. Eight-bit
quantities will have to be entered for the function
to inspect and change memory (command M),
which involves accessing an address. The contents
of this address are displayed, and the user may
then enter a Return (to move on to the next
location in sequence) or a two-digit hex number
(which will be stored at that location)or some other
character (a dot, for example, to exit to the
command level). We can add the two extra valid
characters to the end of the string of valid hex
digits. GETHX2 must then accept either two hex
digits or a Return or a dot. The eight-bit value can
be returned in B and we must use A to indicate
which of these situations has arisen. A will have the
value 0 if a two-digit number was entered, 1 if a
Return was entered, or -1 if a dot was entered.
These values enable us to test the value in A
without having to compare it with another value.

Let’s assume for the moment that the following
declarations have been made for this module:

HEXCHS — FCC‘0123456789ABCDEF’
DOT FCB °.
RETURN — FCB 13 (ASCII code for Return)

We can pass 16 as the length of the string for
GETHX4, where we only need the hex digits, and 18
as the length for GETHX2, where we need the other
two characters as well.

PEST CONTROL

THE GETHX2 ROUTINE
Data:

Next-Character is the ASCII code in A
Offset into Valid-Character table in B
Hex-Value is an eight-bit value, constructed in B
Flag is either 0,1 or—1inA

Process:
Get Next-Character
IF Character is a dot (Offset = 16) then —

Set Flag to -1
ELSE if character is a Return (Offset = 17) then

Set Flag to 1
ELSE

Save Offset temporarily
Get Next-Character (hex digits only valid at
this point) —
Construct Hex-Value

ENDIF

The final coded form of GETHX2 is given on page
779. The coding of the GETHX4 routine is now
made slightly easier by using parts of this routine.
By making HX4 an alternative entry point to the
GETHX2 routine, we can call that routine and.
ensure that only valid hex digits are accepted —
provided we load B with 16 before the call. ‘Thus,
the process for getting four hex digits is made
considerably less complex.

THE GETHX4 ROUTINE
Data:

Hex-Number is a 16-bit value to be returned in D
Most-Significant-Byte and
Least-Significant-Byte are both eight-bit values to be

returned in B

Process:
Get Most-Significant-Byte
save Most-Significant-Byte temporarily
Get Least-Significant-Byte
Construct Hex-Number

The routine is given, in its final form, after the
GETHX2 code.

The routines for displaying characters are less
complicated to design. For the PUTHEX routine, we
will assume that the eight-bit number we require is
to be found in B.

THE PUTHEX ROUTINE
Data:

Number is the eight-bit value found in B
Offset is the four-bit offset put into HEXCHS

Process:
Extract most significant four bits of Number as
Offset

THE HOME COMPUTER ADVANCED COURSE 777

Display HEXCHS (Offset) |
Extract least significant four bits of Number
Display HEXCHS (Offset)

The final routine needed for handling input and
output is the PUTCR subroutine. This is
straightforward, and the final coded form is self-
explanatory. Having coded all the necessary
routines, we can now design the I/O module itself.

THE INPUT/OUTPUT MODULE
Process:

GetCommand will return Offset in B, which can be
used as an offset into a jump table

GetAddress leaves return address in D
GetValue leaves return value in B, flag in A
DisplayValue is passed in B
DisplayAddress is passed in D

778 THE HOME COMPUTER ADVANCED COURSE

The final coded form of the I/O module is given
on the following page. Now we can return to the
Breakpoint module that we began in the last

~ instalment (see page 758). We have already given
the code for the second process in this module,
which sets up breakpoints. We put aside the

problem of coding the first process (inserting
breakpoints) because it involved getting an
address. Having now dealt with this task in the
routines given here, we can proceed to give the
coded version of the process — which
incorporates a branch to the GETADD subroutine.

Notice that in the code, the command INC
NUMBP, PCR adds 1 to the Number-Of-
Breakpoints. At this point, A is one less than the
Number-Of-Breakpoints, which is the correct
offset into the breakpoint table. However, the
address is returned in D, and this is going to destroy

a i i I TA

the value in A because the D register comprises the
A and B registers. Therefore, we use Y to hold the
actual address.

Having coded the first Breakpoint process,
there are three processes remaining. Two of these
reverse the two processes we have coded so far:
Uninsert-Breakpoint will remove a breakpoint
from the table, and Unset-Breakpoint takes out
the SWI-Opcode and puts back the original value.
These two routines will be looked at in the next
instalment. The third remaining routine, to display
all the breakpoints, is the last routine that we will
code here.

DISPLAY-BREAKPOINTS
Data: :

Breakpoint-Number js an eight-bit counter to run
through the Breakpoint table in B

Current-Breakpoint is the address to be displayed
Breakpoint-Labels are two-digit (decimal)
numbers to label the addresses as they are
displayed :
Space js the space character that separates a label
from an address

Process 3: Display-Breakpoints

Set Breakpoint-Number to 1 (an actual offset of
Zero)
While Breakpoint-Number <= Number-Of-
Breakpoints —

Display Breakpoint-Labels(Breakpoint-
Number) |

Display Breakpoint-Table(Breakpoint-Number)
Increment Breakpoint-Number ,

Endwhile |
End of Process 3 | re

THE HOME COMPUTER ADVANCED COURSE 779°

Gangland
These are two of the scenes
from Mugsy. The first shows
part of the question and answer
phase of the game, where Louey
is informing Mugsy of the
current price of ‘clients’. The
second scene is from one of the
animated sequences. Note the
white outline around the ‘hood’
on the stairs. This is an example
of attribute masking of
character cells

MUGS GAME

: small window at the bottom showing the current

Mugsy is a strategy game from Melbourne —yumber of ‘hoods’ and ‘dough in da safe’, etc, the

House, the company responsible for the — screens consist entirely of graphics pictures. These

successful graphic adventure game The are drawn on a Spectrum using Melbourne

Hobbit (see page 540). In this unusual game —_House’s graphics package, Melbourne Draw. Asa

the player takes the part of Mugs 2 Spectrum high resolution screen will occupy over

leader running a protection rack¢ six Kbytes of
American gangster era of the 19 ;

gang, straight lines, and

brib . Using Melbourne

on and DRAW enables

Fu t up with the minimum of

mo V, for example, requires only two co-
ies to store a straight line, while bit mapping

Mug d need a whole series of points to be plotted

game 6 achieve the same effect. The way in which the

rules. : Spectrum stores information about colour dictates

response d then waits some of the methods that are used —in the

for the resut one of two animated street scene, a problem arises as a car

animated screen he first screen moves along a road while a face watches from’a

shows a speakeasy in which a gangster fires ata window. Asthe Spectrum will not allow more than
two colours to be displayed in the same character
square, a ‘mask’ has to be devised to allow colours
to be changed very rapidly — otherwise the face
will change colour to match the car. Colour
attributes (FLASH, BRIGHT, INK and PAPER) are held
in a single byte. To produce a foreground mask,
the INK attribute, held as the byte’s three least
significant bits, must be changed. The byte is first
ANDed with 248 to set the INK colour to zero, and is
then ANDed again with the new INK colour to
produce a new mask. The face in fact changes
colour to match the car, but then changes back
again — but it happens so quickly that the eye is
fooled and the face does not appear to change
colour at all.

IAN McKINNELL

rival. The second shows a street in which a Mugsy’s graphics are certainly very impressive,

gangster leans out of a car window firing a burst of but the game itself palls rapidly. The action is

machine gun bullets. | repetitive, and the player soon learns how tojuggle

After the break Louey reappears with the the various factors that are needed to stay in

results of the previous year’s decisions. Provided _ business. However, Mugsy does provide aspiring

that adequate funds have been set aside for all of programmers with a good example of how to cram

the various payments that have to be made, then _ high resolution graphics into a limited space.

the year should end in a profit. The next round : ;

then begins, with a repeat of the question and
answer routine. : :

The player’s score is given at the end of the game
as a percentage. The score depends on how much
‘dough’ and how many clients have been

accumulated as well as the length of time that
Mugsy has managed to survive.

Apart from the instruction screens that have a

780 THE HOME COMPUTER ADVANCED COURSE

E
Here, courtesy if Zilog Inc, we reproduce a further part of the Z80 programmers reference card.

Bit Manipulation Group

REG.) INDIR,| INDEXED

ete (HL) (1X+d) | (1¥ +d) L

CB

REGISTER ADDRESSING

a> ios)

- O = oO
ee

a

oO oO

i?)

bea

—@
o

TEST ‘BIT’

i

CB :
67 |

OQ ie]

RESET
BIT ‘RES’

on
°n0
> m

on
200

00!1|w,00
°g0| meno

w iri

re) fo)

AN|Io,gon

2g0|o%wo
0,00 m?oo oO m

on

ale Lo)

SET BIT
‘SET’

on
290

1

FD
CB

) B6

a
b
a
t
e

o
b

h
a
a
r

S
E
A
R
S
,

TU
aa
ro
n

n
e
e
d

.
e
e
e

se
ca

,
s5i

meR
Se

RR
RDEM

:
ssa

ape
s

nem
eai

au
aca

pan

s
e
a
r

S
e

a

a e
a

a

PER
I

R
A

e
d

e
e

re
r
e
n
e

a

*
pant

ctr

AS
S

=
W
H
:

PA
TA

L
O
I

LE
P

L
E
E

AL
OT

E
O
N

E
E

A

PE
E
a

e
r

a

e
e
k

a
a

c
a
d

‘h
s

:
a

